

T-CheckSM for Technologies for
Interoperability: Open Grid Services
Architecture (OGSA)—Part 1

Soumya Simanta
Grace A. Lewis
Lutz Wrage

April 2007

TECHNICAL NOTE
CMU/SEI-2007-TN-016

Integration of Software-Intensive Systems Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract vii

1 Introduction 1

2 Grid Computing 3
2.1 Virtual Organization (VO) 4
2.2 Grid Architecture 6
2.3 Open Grid Services Architecture (OGSA) 8
2.4 Globus ToolKit (GTK) 8

3 Using the T-CheckSM Approach 10
3.1 T-Check Context 11
3.2 Evaluation Hypotheses for this T-Check investigation 12
3.3 Evaluation Criteria 13

4 Designing and Implementing the Solution 14
4.1 Defining a System Architecture Based on the T-Check Context 14
4.2 Selecting a Web Service as a Source of Raw Data 14
4.3 Installing and Configuring the Globus ToolKit 4 (GTK4) 15
4.4 Discovery of OGSA-Data Access and Integration 15
4.5 Building and Deploying OGSA-DAI WSRF 18
4.6 Deploying and Exposing New Data Services on OGSA-DAI 18
4.7 Runtime View of the T-Check Solution 19
4.8 Using Web Services to Access Data from External Web Site 24
4.9 Creating a Round-Robin Scheduler for OGSA-DAI Data Services 25
4.10 Integrating Data Access and Storage by Using OGSA-DAI Services 26
4.11 Creating the Data Consumer and the Dashboard 26

5 Evaluation and Experiences with OGSA 28
5.1 Results of Hypothesis 1 28

5.1.1 OGSA-DAI is Slower Than Other Similar Technologies for Data Access and
Retrieval 29

5.1.2 Predicting and Controlling the Quality of Service when Using External Services
May Not Always Be Possible 31

5.1.3 Authentication Mechanisms for Web Services are Still Not Standardized 32
5.2 Results of Hypothesis 2 34

5.2.1 It is No Surprise that Testing Distributed Applications is Complicated 34
5.2.2 OGSA-DAI Data Services are Good Candidates for Infrastructure Services 35

6 Conclusions and Request for Feedback 36

Appendix A Data Service Resource Properties File 37

Appendix B Acronyms and Initialisms 39

References 40

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2007-TN-016

List of Figures

Figure 1: Example of a Grid System 3

Figure 2: Virtual Organizations 5

Figure 3: The Layered Grid Architecture 6

Figure 4: Primary Components of Globus Toolkit 4 9

Figure 5: The T-Check Process for Technology Evaluation 10

Figure 6: Context Diagram of a Generic Data Management Scenario 11

Figure 7: Architecture for the T-Check Solution 14

Figure 8: OGSA-DAI Architecture 16

Figure 9: Detailed Runtime View of the T-Check Solution 20

Figure 10: Sequence Diagram Showing the End-to-End Interaction between Various Components 24

Figure 11: Contact Graph Showing the Model of the Raw Data 25

Figure 12: Screen Capture of OGSA T-Check Dashboard GUI 27

Figure 13: Experiment Setups for Comparison 30

Figure 14: Sequence of User and Application Registrations with Yahoo and Flickr 32

Figure 15: Sequence of Activities for Authentication 33

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2007-TN-016

List of Tables

Table 1: Layers of Grid Architecture 7

Table 2: Elements of a Generic Data Management Scenario 12

Table 3: Evaluation Criteria for the T-Check Investigation 13

Table 4: Elements of OGSA-DAI Architecture 17

Table 5: Summary of the Process for Deploying Data Services and Data Service Resources 19

Table 6: Architectural Elements and Their Responsibilities 21

Table 7: Timing Data for Web Service and Three Different Data Access Mechanisms 31

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2007-TN-016

Abstract

Many current technology approaches exist for building systems that have interoperability re-
quirements. This report investigates Open Grid Services Architecture (OGSA), one of the many
technologies for accomplishing interoperability, using the T-Check technique. A T-Check is a
simple and cost-efficient way to understand what a technology can and cannot do in a specific
context. This report describes a T-Check exploration of the feasibility of using OGSA in the con-
text of data management, finding that OGSA (a) provides data storage and retrieval where the
specific implementation of the data store implementation is transparent and (b) allows addition or
removal of data stores at runtime without affecting system operation. This report is part one of a
two-part investigation; part two will look at OGSA in the context of load distribution.

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2007-TN-016

1 Introduction

The Integration of Software-Intensive Systems (ISIS) team at the Carnegie Mellon® Software
Engineering Institute (SEI) is examining technologies and approaches for the construction of sy
tems that are required to interoperate with other systems, with the purpose of identifying gaps be-
tween what these technologies and approaches offer and what users expect of them. The end goal
is to provide users with information about what can be expected from the current state of technol-
ogy and to provide technology suppliers with information about user expectations.

s-

There are many technologies for building systems that have interoperability requirements. Each
approach has particular advantages and disadvantages with respect to interoperability, and each
works well in some circumstances but not in others [Lewis 04]. In this report, we investigate
Open Grid Services Architecture (OGSA), one of many technologies for accomplishing interop-
erability [Foster 04].

Computing power in terms of processing power, storage capability, and bandwidth has continu-
ously increased over the past two decades. However, computing needs have become even more
demanding, creating challenges such as:

• Many complex applications today require substantially more computing power and resources
than are provided by traditional computing systems. For example, there is a need for systems
capable of processing and storing information in the range of tens of petabytes (107 gigabytes)
[Childers 06].

Even if it is technically feasible for an organization to acquire the necessary computing infra-
structure, it may not make economic sense for a single organization to invest in an expensive
but highly capable computing infrastructure, unless a close-to-full resource utilization is justi-
fied. For example, a bioinformatics organization running a simulation might require an infra-
structure for only 15 days a month. The expensive computing environment therefore remains
idle half of the time, wasting resources.

• Heterogeneous computer systems and applications often need to interact and interoperate with
each other.

For example, a cancer research agency needs to distribute, store, and retrieve high-resolution,
cancer-related medical images from/to over 30 different medical centers and hospitals [HP
05]. Each hospital or medical center could have systems running on different hardware plat-
forms and software built using different technologies.

• Changing business drivers, needs, and environment pose the biggest challenges, perhaps, to
today’s enterprises.

For example, business processes and software systems must rapidly incorporate changes in
the marketplace, accounting policies, or laws—not only to meet mandates but also to remain
competitive.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

 SOFTWARE ENGINEERING INSTITUTE | 1

Grid computing, as implemented through OGSA, possibly provides a solution to some of these
challenges by allowing collaboration and resource sharing between organizations [Foster 04].

• Grid computing is based on the creation of virtual organizations (VOs) that allow sharing of
resources between organizations (see Section 2.1). Typically, an organization can use the re-
sources it owns and controls. However, in a VO, computing resources from various organiza-
tions are pooled together, allowing them to utilize resources that are not directly under their
control. The pooling of resources leads to better computing capability for all participating or-
ganizations without each investing in and maintaining an entire infrastructure.

• Grid systems tend to be heterogeneous and distributed—encompassing a variety of hosting
environments (e.g., J2EE and .NET), operating systems (e.g., Unix, Linux, Windows, and
embedded systems), devices (e.g., computers, instruments, sensors, storage systems, data-
bases, and networks), and services. Various vendors can provide all of those environments,
systems, devices, and services. Grid computing architectures, such as OGSA, assume that re-
sources in a Grid system will be heterogeneous. Virtualization of resources on a Grid using
open protocols and standards enables interoperability between heterogeneous elements. For
example, underlying computing nodes that are based on different computer architectures and
run on different operating systems can contribute CPU cycles in a Grid system.

• A Grid computing architecture promotes loose coupling, decentralization, and service-
orientation, enabling rapid incorporation of changes. For example, a storage service provider
can use Grid technology to provide technology-neutral data services to its customers on the
Internet.

Initially, in the mid-1990s, Grid computing was restricted to the scientific research community
[Foster 01]. However, over the past few years, Grid-based applications and infrastructure have
been explored in domains such as financial risk analysis, drug discovery, biomedical research, and
healthcare [OGF 07].

A T-Check investigation is a simple and cost-efficient way to understand what a technology can
and cannot do in a specific context [Lewis 05a]. The goal of this report is to use the T-Check ap-
proach to explore the feasibility of using OGSA in the context of data management. Specifically,
this T-Check investigation focuses on understanding how OGSA deals with (a) heterogeneous
data stores and (b) a need to meet storage demands dynamically. This report is part one of a two-
part investigation; part two will look at OGSA in the context of load distribution.

In Section 2, we provide fundamental Grid computing concepts. In Section 3, we define the T-
Check elements for the exploration of OGSA. Section 4 provides the details about design and im-
plementation. Finally, in Sections 5 and 6, we discuss our findings and recommendations.

2 | CMU/SEI-2007-TN-016

2 Grid Computing

Foster provides this three-point checklist for defining a Grid system [Foster 02a]:
1. coordinates resources that are not subject to centralized control

2. uses standard, open, general-purpose protocols and interfaces

3. delivers nontrivial qualities of service

To understand this definition, consider a Grid system that comprises several organizations, as
shown in Figure 1. In this example, Organizations A and B provide a cluster of highly capable
workstations and/or mainframes that will be used to provide compute cycles to consumers of the
Grid system, such as Organization C. Organizations B and D contribute data storage resources.

The workstations, mainframes, and databases are resources on the Grid system. No single organi-
zation owns them all, or even all of any resource. Each organization controls its resources by de-
fining its own policies and mechanisms. The sharing organization keeps control over its resources
when shared on the Grid. Consumers utilize these shared resources in a coordinated and con-
trolled fashion without having any direct control over them.

Figure 1: Example of a Grid System

 SOFTWARE ENGINEERING INSTITUTE | 3

A Grid system allows heterogeneous resources to interact, coordinate, and interoperate with each
other. This coordination and sharing is possible only if the protocols and interfaces used by all
participating organizations are standardized and open. These protocols provide mechanisms such
as authentication, authorization, resource discovery, scheduling, and resource access in a Grid
system [Childers 06].

2.1 VIRTUAL ORGANIZATION (VO)

Understanding the concept of the VO is essential and fundamental for understanding Grid com-
puting and architectures that facilitate the implementation of Grid systems (see Section 2.2). VOs
can be viewed as runtime subsets of a Grid system that enable disparate groups of organizations
or individuals to share resources in a controlled fashion, so that member organizations can col-
laborate to achieve a shared goal. A Grid system provides benefit when the quality of service
(QoS) it delivers to any participating organization is significantly better than the individual or-
ganization can afford to provide by itself [Foster 02a]. Therefore, an organization will see benefit
from participating in a Grid system if it cannot (due to technical or economic reasons) create the
necessary infrastructure by itself. In many cases, the participating organizations do not have any
prior relationships [Foster 01]. Figure 2 shows a Grid system and the creation of three virtual or-
ganizations where there are four real organizations contributing resources.

4 | CMU/SEI-2007-TN-016

Figure 2: Virtual Organizations

There are some important aspects of resource sharing in VOs [Childers 06, Foster 01, Foster 02a]:

• Sharing is not limited to information exchange and can involve direct access to remote dis-
tributed resources such as software, computers, data, databases, and sensors. For example, a
cluster of computers can be used to run a large risk analysis simulation of “what-if” scenarios.
In this case, the computing cycles from various computers shared on the Grid are used for the
simulation. Coordinated sharing of these computing cycles in a distributed environment is
nontrivial compared to simple data or file exchanges.

• Sharing is conditional. Each resource owner makes resources available, subject to its con-
straints and policies. For example, a storage service provider (SSP) might give higher priority
to its paying consumers than its nonpaying ones. The SSP may also provide paying consum-
ers a higher quota of storage space or create a policy in which it does not allow data originat-
ing from a specific geographical region to be stored on its devices. These polices and mecha-
nisms can be modified during the operation of a Grid system.

• Relationships in a VO are dynamic and vary over time in terms of the resources involved, the
nature of the access permitted, and the participants to whom access is granted. An organiza-
tion sharing a resource can decide to drop membership of the VO at any time, or the same or-
ganization can decide to share a new resource. Therefore, a VO should provide mechanisms
for discovering and characterizing the nature of the relationships that exist within elements of
a VO. For example, the number of organizations providing disk storage space can change

 SOFTWARE ENGINEERING INSTITUTE | 5

over time, resulting in an increase or decrease in the actual storage capacity provided by the
VO. The VO and the supporting infrastructure must provide mechanisms to deal with these
dynamic changes. In this example, the VO should have a mechanism for identifying the cur-
rently registered storage service providers and other parameters such as maximum allowable
storage capacity.

• A shared resource can be used in more than one way, depending upon the context. For exam-
ple, a computer’s CPU can be used to provide compute cycles and, at the same time, host
software that provides infrastructure capability to the Grid system.

• A shared resource can have membership in more than one VO at the same time. For example,
a shared workstation can provide compute cycles in one VO and storage space on its physical
devices for another VO. For example, in Figure 2 resources Resource42 and Resource24 have
membership in VOs 2 and 3.

2.2 GRID ARCHITECTURE

Grid architecture defines the elements that are required for establishing and maintaining VOs. It
defines basic components—along with their purposes and functions—and the interactions be-
tween them [Foster 01]. A layered Grid architecture is presented in Figure 3.

Figure 3: The Layered Grid Architecture

6 | CMU/SEI-2007-TN-016

Table 1 provides the description of the various layers illustrated in Figure 3.

Table 1: Layers of Grid Architecture
Layer Description

Fabric This lowest layer in the Grid architecture contains the resources that are
shared among VOs using the Grid infrastructure. Some examples of these
resources are computational platforms, storage devices, and network re-
sources. These resources may also be logical entities such as a distributed
file system or a distributed computer cluster. This layer is not concerned with
the internal implementation details of the logical entity. For example, the
network protocols used in a distributed file system are encapsulated from the
fabric layer of the Grid architecture. Components in the Fabric layer imple-
ment the resource-specific operations that are local to the resources.

Connectivity The Connectivity layer is responsible for defining the core communication
and authentication protocols required for Grid-specific transactions. Exam-
ples of such protocols are TCP/IP, HTTP, HTTPS, and DNS. These commu-
nication protocols enable exchange of data between Fabric layer resources
and the authentication protocols that are necessary to verify the identity of
resources and users in a Grid system.1

Resource The Resource layer contains services, APIs, software development kits
(SDKs), and protocols for managing resources individually. These manage-
ment activities include secure negotiation, initiation, monitoring, control, ac-
counting, and payment of sharing operations on individual resources. Two
primary classes of Resource layer protocols are

1. Information protocols used to obtain information about the structure and
state of a resource (e.g., how much free space is available for storage
on a data server)

2. Management protocols that provide partial control over the actual re-
source and are used to negotiate access to shared resources (They en-
sure that requested protocol operations are consistent with the policies
under which the resource is being shared. For example, requirements
such as QoS and advanced reservation can be specified when they
share a resource.)

Collective The Collective layer deals with services, APIs, SDKs, and protocols for man-
aging multiple resources; it contrasts with the Resource layer where the fo-
cus is on one specific resource. This layer implements a wide variety of shar-
ing behaviors among a collection of resources without placing new
requirements on the individual resources that are shared. Examples of com-
ponents in this layer are directory services that allow VO participants to dis-
cover resources and their properties and data replication services that sup-
port storage access and management.

Application This layer refers to the actual user applications2 that run and operate within
a Grid system. As shown in Figure 3, it is not mandatory for applications to
access only the Collective layer that is directly below it. Applications can also
use the Resources and Connectivity layers directly. The ability to bypass the
Collective layer provides more flexibility to the application layer.

1 Acronyms and initialisms used in this report are defined in Appendix B.

2 In this technical note, such applications are referred as Grid-based applications.

 SOFTWARE ENGINEERING INSTITUTE | 7

2.3 OPEN GRID SERVICES ARCHITECTURE (OGSA)

OGSA is a standard and open architecture for Grid systems. OGSA is based on fundamental con-
cepts and technologies from Grid computing and Web Services [Foster 02b, Lewis 06]. The pri-
mary goal of OGSA is to identify and standardize in a Grid system most of the commonly found
services, such as security, job management, resource management, and data management.

OGSA defines a core set of standard service interfaces with their associated semantics for pur-
poses such as state management, fault management, and service creation and management. Both
interfaces and semantics are required to build interoperable and reusable services. This common
and standard service semantics and interface for a service is called Grid Service. A Grid Service is
a Web service that adheres to the OGSA standards. OGSA uses the standard Web services inter-
face definition language (WSDL) to define services for creating, naming, managing, monitoring,
grouping, and exchanging information among Grid Services [Foster 04, Zhang 05].

2.4 GLOBUS TOOLKIT (GTK)

The open source Globus Toolkit 4 (GTK4) contains services, programming libraries, and devel-
opment tools designed for building Grid-based applications [Foster 06]. It was developed by the
Globus Alliance and other contributors from around the world [GlobusAlliance 06]. The main
idea behind the Globus toolkit is to provide a fundamental and robust infrastructure, tools, and
libraries for creating a Grid system. The toolkit also provides services commonly used by Grid-
based applications.

The GTK4 architecture contains three key components [Foster 06]:

1. A set of infrastructure service implementations such as execution management, data access
and movement, replica management, monitoring and discovery, and credential management
(Most of these services are Web services written in Java.)

2. Three containers that can be used to host user-developed Grid services written in Java, Py-
thon, and C

3. A set of client libraries that are used to interact with and invoke GTK4 services as well as
user-developed Grid services

These Globus toolkit components fall into five main categories: (1) security, (2) data manage-
ment, (3) execution management, (4) information services, and (5) common runtime. Figure 4
shows the details of each of these five categories [Foster 06].

8 | CMU/SEI-2007-TN-016

Figure 4: Primary Components of Globus Toolkit 4

 SOFTWARE ENGINEERING INSTITUTE | 9

3 Using the T-CheckSM Approach

The T-Check3 approach is a technique for evaluating technologies. This approach involves (1)
formulating hypotheses about the technology and (2) examining these hypotheses against specific
criteria through hands-on experimentation. The outcome of this two-stage approach is that the
hypotheses are either sustained or refuted. The T-Check approach has the advantage of producing
very efficient and representative experiments that not only evaluate technologies within the con-
text of their future use but also generate hands-on competence with the technologies [Wallnau
01]. A graphical representation of the T-Check process is shown in Figure 5.

Figure 5: The T-Check Process for Technology Evaluation

The T-Check process is part of a larger process for context-based technology evaluation. In this
larger process, the context for the T-Check is established, and the expectations from the technol-
ogy are captured [Lewis 05a].

3 The T-Check approach was called the model problem approach and is referred to as such in previous SEI technical notes

and reports.

10 | CMU/SEI-2007-TN-016

3.1 T-CHECK CONTEXT

The context for this T-Check investigation is data management in a distributed, data-centric envi-
ronment without centralized control. Consider the generic scenario shown in Figure 6 where a
large volume of data is generated from a continuous data source. This generated data (or a rele-
vant part of it) needs to be stored and retrieved to be processed in some way. Finally, the proc-
essed information will be used by data consumers.

This scenario is common in industry and the DoD. In addition, it is not uncommon for data gen-
erators, data processors, data stores, and data consumers to be heterogeneous, independent enti-
ties. The absence of centralized control is one important distinction between Grid systems and
traditional distributed systems. In a distributed system, even though the elements are distributed,
they are in most cases under the centralized control of one entity or a small number of entities.
Another characteristic of this scenario is the ability to support dynamism, meaning that the
amount of data to be stored varies with time.

Figure 6: Context Diagram of a Generic Data Management Scenario

 SOFTWARE ENGINEERING INSTITUTE | 11

Table 2 provides detail about the important elements in the scenario illustrated by Figure 6 as they
were viewed for this T-Check investigation.

Table 2: Elements of a Generic Data Management Scenario

Element Description

Continuous Raw Data
Source

Generates data at regular intervals, for example

• weather satellite
• traffic flow data sensor
• stock quote ticker system
• wireless sensor network installed on a bridge
• news stream of an online newspaper on the Internet

Raw Data Consumer Fetches raw data from the continuous raw data source and uses the data
service to store it in the data stores.

Data Services Capture and store data from a continuous data source

The data generated by the data source is dynamic; the data service must
have the capability to store all the data transparently—by switching data re-
positories as soon as a certain storage capacity threshold is reached on a
particular database instance, for example.

Data Stores Store all raw data

Data Processor Retrieves data from the data stores and then performs some processing on it

3.2 EVALUATION HYPOTHESES FOR THIS T-CHECK INVESTIGATION

Hypotheses are claims about the technology that will be supported or refuted after the successful
completion of the T-Check investigation. For this T-Check investigation, the following hypothe-
ses were defined:

1. OGSA provides data storage and retrieval where the specific implementation or location of
the data sources is transparent for raw data consumers and data processors.

2. OGSA allows developers to add new data stores (databases) and remove existing data stores
at runtime without affecting the overall operation of the system.

12 | CMU/SEI-2007-TN-016

3.3 EVALUATION CRITERIA

After the hypotheses are formed, the next step in the T-Check process is to define evaluation crite-
ria for each hypothesis. The criteria associated with the hypotheses in this T-Check investigation
are shown in Table 3.

Table 3: Evaluation Criteria for the T-Check Investigation
Hypothesis Evaluation Criteria

OGSA provides data storage and re-
trieval where the specific implementa-
tion or location of the data sources is
transparent for raw data consumers
and data processors.

1. A data consumer application accesses a data service
by using a unique address and does not need to know
the actual location or type of data sources serviced by
the data service. For example, the consumer of the
data service should not have any dependency on the
actual type and location of the database(s). If an Oracle
database is replaced with a MySQL database without
changing the logical address4 of the data service, the
data consumer application should run without the need
to make any code changes.

2. The data is distributed and stored in a round-robin
fashion in the available databases. For example, if
there are three available databases, data records are
distributed among them continuously and equally.

OGSA allows administrators to add
new data stores (databases) and re-
move existing data stores at runtime
without affecting the overall operation
of the system.

1. The data service has an Oracle and a MySQL data-
base. A new MySQL database is added without affect-
ing the overall operation of the system.

2. The second MySQL database is removed without af-
fecting the overall operation of the system.5

4 The logical address of a data service is a unique URL that is used to locate and obtain a reference to the service.

5 A graceful degradation of the system is assumed when any database is removed. For example, the data on the MySQL
database will not be available to the processing service once the MySQL database is removed from the control of the
data service.

 SOFTWARE ENGINEERING INSTITUTE | 13

4 Designing and Implementing the Solution

4.1 DEFINING A SYSTEM ARCHITECTURE BASED ON THE T-CHECK CONTEXT

The first step in the design process was to create a notional architecture of the system based on the
T-Check context discussed in Section 3.1. The goal of creating an architecture was to determine
the software requirements for the development environment and runtime environment that was
required for implementing the T-Check. Figure 7 illustrates the system architecture designed for
this T-Check investigation; the elements of the architecture are described throughout the rest of
this section.

Figure 7: Architecture for the T-Check Solution

4.2 SELECTING A WEB SERVICE AS A SOURCE OF RAW DATA

Given the notional architecture and the scenario for the T-Check examination (Section 3.1), we
evaluated various online Web services as potential raw data sources. The important requirement
on these Web services was that they should provide a continuous6 stream of raw data using a
standard Web service interface. We evaluated the following three Web services:

1. A weather Web service that provides temperature information based on date and geographi-
cal coordinates [NWS 07]

6 A continuous stream of raw data in the T-Check context means a data source that provides a significantly large number

of raw data records. For this T-Check investigation, any source that provided more than 200,000 records was sufficient.

14 | CMU/SEI-2007-TN-016

Although this Web service provided a simple WSDL interface, it did not produce a sufficient
volume of data and did not provide information for many calendar dates that we tested.

2. Google’s search Web Services Application Programming Interface (API). The Google API
imposed a restriction of 1000 searches in one calendar day, a limitation that meant that it was
not a good match for the T-Check investigation. In addition, creating the data model for stor-
ing the resulting data would have required a large amount of effort due to its complexity,
which would have defeated the simplicity characteristic of the T-Check approach.

3. Flickr, an online photo management and sharing application [Flickr 07] provides an API that
can be used to write applications that access and use public data such as photos, tags, and
profiles [FlickrAPI 07]. This service provides many popular request-response formats such
as SOAP, representational state transfer (REST), and XML-RPC, along with API kits in
various programming languages such as Java, .NET, Perl, and PHP. We decided that this ser-
vice was well suited for the needs of the T-Check investigation for the following reasons:

a. The online application provides a public Web services API that can be used free of cost
for noncommercial applications.

b. The semantics and data model of the raw data are relatively easy to understand, which
reduces the learning curve of the API and allows more focus on the actual technologies
being evaluated.

c. The API provides a wide selection of operations, such as getting the profile information
of subscribers of the Web site, geographical locations of places where the images were
taken and the brand of camera they were taken with.

d. Bulk data can be obtained from the online application making it a continuous data
source, one of the key requirements of this T-Check investigation.

e. The API supports various request-response formats and provides a toolkit for Java,
which was our choice of implementation language.

4.3 INSTALLING AND CONFIGURING THE GLOBUS TOOLKIT 4 (GTK4)

The next step was to create a Grid environment. The complete version of GTK4 was installed on a
Linux machine. Extensive documentation in the form of a quick start guide and a detailed admin-
istrator’s guide is provided on the Globus Web site [GlobusAlliance 06]. The installation of
GTK4 was straightforward; it required simply following the instructions in the online documenta-
tion. A simple example Grid service called MathService was deployed to the Grid container to
verify that the installation was done correctly [Childers 06].

4.4 DISCOVERY OF OGSA-DATA ACCESS AND INTEGRATION

With the Globus toolkit installed and configured, our next step was to investigate the data access
support provided by OGSA and the toolkit. At the time of defining the T-Check context and no-
tional architecture, we knew little about the various data access capabilities provided by GTK4.
We discovered OGSA-Data Access and Integration (OGSA-DAI), an open source middleware
component that supports data access and integration in a Grid system using Grid services [OGSA-
DAI 07a]. OGSA-DAI provides capabilities for querying, updating, transforming, and transferring
data using Web services in a data-resource-independent way. Basic lower level OGSA-DAI Web

 SOFTWARE ENGINEERING INSTITUTE | 15

services can be combined to create complex higher-level services for more complex data-intensive
operations that are capable of performing business-specific data operations. For example, a simple
OGSA-DAI data operation is to insert a record into a database table. A higher-level data operation
is to insert a new customer record, which internally could be performing multiple simple insert
operations into multiple tables.

After an initial literature review, we decided to use OGSA-DAI to implement the data access and
retrieval functionality for the following reasons:

• OGSA-DAI offers data integration services that can be deployed within a Grid system
[OGSA-DAI 07a].

• OGSA-DAI provides support for various types of data stores, including relational databases,
XML files, and plain text files. It also supports most of the commonly used relational data-
bases—including Oracle and MySQL, the two relational databases we planned to use.

Figure 8 shows the OGSA-DAI architecture and Table 4 provides a description of its elements.
OGSA-DAI has a document-oriented interface implemented using Web services conforming to
the Web Services Interoperability (WS-I) basic profile and the Web Services Resource Frame-
work (WSRF) [OGSA-DAI 07c, WS-I 06, WSRF 06]. The WSRF implementation of OGSA-DAI
is compatible with GTK4 and enables stateful Web services—an important OGSA requirement
[Childers 06, Myer 04]. The WSRF-compliant version of OGSA-DAI was used in this T-Check
investigation because it is compatible with the Globus Toolkit’s implementation of WSRF.

Figure 8: OGSA-DAI Architecture

16 | CMU/SEI-2007-TN-016

Table 4: Elements of OGSA-DAI Architecture
Element Description Responsibilities

OGSA-DAI Cli-
ent Application

OGSA-DAI clients can use the
OGSA-DAI client toolkit to
access any data service.

Uses the OGSA-DAI data services to access the data
resources, which not only simplifies the development
process but also allows the client to access both
WSRF and WS-I data services transparently

OGSA-DAI Cli-
ent Toolkit

This toolkit is a set of higher
level APIs that encapsulate
some of the complexity of
accessing data.

• Provides mechanisms to construct, send, and re-
ceive data requests and responses.

• Acts as a wrapper that isolates the specific imple-
mentation of data services in either WSRF or WS-I

OGSA-DAI Data
Service

This component is responsi-
ble for providing a Web ser-
vices interface.

Provides a Web services interface to the data service
resources that reside inside OGSA-DAI core

OGSA-DAI Core This component is the con-
tainer for all data service re-
sources.

Receives requests from the data services and passes
them to the corresponding data service resource

Data Service
Resource

This component represents
the actual data resource.
Each data service resource
has a corresponding data
resource that it accesses us-
ing a data resource accessor.

Is responsible for execution of perform7 documents,
generation of response documents, data source ac-
cess, and session management

Data Resource
Accessors

The data resource accessor is
the connector between a data
service resource and the cor-
responding data resource.
There is a one-to-one map-
ping between data resource
accessors and data re-
sources.

Connects data service resources with their data re-
sources

(Currently, OGSA-DAI supports data resource acces-
sors for XML files, relational databases, and file sys-
tems. Custom data resource accessors for new data
resource types can be implemented.)

Data Resources These are the physical data
stores that are exposed using
OGSA-DAI services. Three
types of data stores are cur-
rently supported by OGSA-
DAI: relational databases,
XML databases, and file sys-
tems.

Store data passed from data resource accessors

7 A perform document describes the actions that a data service resource should take on behalf of the client. Each action is

known as an activity. OGSA-DAI includes a large number of activities for performing common operations such as data-
base queries, data transformations, and data delivery.

 SOFTWARE ENGINEERING INSTITUTE | 17

4.5 BUILDING AND DEPLOYING OGSA-DAI WSRF

Having installed GTK4, we then installed OGSA-DAI WSRF using the following steps:

1. Verify the installations of Java 1.4.x, Apache Ant 1.5/1.6 [Apache 07], Globus Toolkit 4.0.x
Java Web service core, Oracle database, and MySQL database because these are all prereq-
uisites for installing OGSA-DAI.

2. Complete a source build of the OGSA-DAI sources to create a binary distribution. The
source build was straightforward on Linux and Windows XP. We had to modify the standard
build file to make it compatible with Java version 1.4 because we had installed JDK 1.5 on
our machines and the source and target builds needed to be version 1.4. Once we identified
this problem, it was a simple change in the standard build file.

3. Deploy the OGSA-DAI WSRF binaries to a Web services container. In our case, the con-
tainer was the embedded Apache Axis Web services container included in the GTK4 distri-
bution. OGSA-DAI provides both a command-line as well as a GUI-based interface for de-
ploying the binaries into the container. We used OGSA-DAI command line scripts written in
Apache’s Ant for deployment.

4. Verify that the actual deployment took place without errors. This deployment was first done
on a Windows machine. Although the deployment script never showed any errors, the actual
deployment was unsuccessful because we were never able to run any OGSA-DAI services in
a Windows XP environment. After a few unsuccessful attempts in the Windows environ-
ment, we decided to test the installation of the OGSA-DAI in a Linux environment. We con-
sidered the Linux installation successful after testing a simple OGSA-DAI service that was
provided with the installation. This example was tested by invoking the OGSA-DAI service
from the same Linux machine. We did not pursue the verification of the deployment on the
Windows machine because it was not critical to our evaluation.

4.6 DEPLOYING AND EXPOSING NEW DATA SERVICES ON OGSA-DAI

Once OGSA-DAI WSRF was deployed into the Grid container,8 we added data services and ex-
posed them to external clients, using the three-step process summarized in Table 5. While com-
mand-line and GUI-based mechanisms are available for performing the steps, we chose to use the
command-line version. All the services were deployed without problems.

8 The Grid container is a runtime environment similar to J2EE-compliant servers that is provided with the Globus Toolkit.

The container provides the necessary infrastructure to host Grid services.

18 | CMU/SEI-2007-TN-016

Table 5: Summary of the Process for Deploying Data Services and Data Service Resources
Step Description Step Details

1. Deploy OGSA-DAI data
service(s) in the Web ser-
vices container that runs
inside the Globus Toolkit

a) Obtain a unique name for the data service. (Note: a unique name
is provided.)

b) Configure parameters for

• service configuration (dynamic or not dynamic)

• the maximum number of concurrent requests that each data
service resource can support

• the maximum length of the queue that stores requests when
the maximum number of concurrent requests limit is reached

2. Deploy OGSA-DAI data
service resource(s)

 (We deployed four data
services resources, as
shown in Figure 9.)

a) Create a properties file with database characteristics for each
data service resource (see Appendix A for an example).

b) Install Java Database Connectivity (JDBC) drivers for MySQL
and Oracle by placing them in the “drivers” folder before invoking
the deployment script for the data service resource.

3. Expose data service re-
source(s)

a) Map each OGSA-DAI service to its data service resources.

b) Expose data service resources. They can be exposed as ordinary
or dynamic.

• Ordinary exposure of data service resources requires a re-
starting of the GTK container.

• For dynamic exposure, the service should be marked config-
urable when it is first deployed.

4.7 RUNTIME VIEW OF THE T-CHECK SOLUTION

We decided to deploy four OGSA-DAI data services as shown in Figure 9, which shows the de-
tailed runtime architectural view of the solution implemented for this T-Check investigation. We
mapped three services to a MySQL database and one to an Oracle database. All four dynamic ser-
vices were deployed into a GTK4 container running on a Linux machine. OGSA-DAI dynamic
services are configurable at runtime and can be deployed and removed from the GTK4 container
without restarting the container.

Together with Figure 9, Table 6 and Figure 10 provide a complete explanation of the runtime
view for this T-Check solution. Table 6 on page 21 provides details about each architectural ele-
ment shown in Figure 9. Figure 10 on page 24 shows the interaction between components.

 SOFTWARE ENGINEERING INSTITUTE | 19

Figure 9: Detailed Runtime View of the T-Check Solution

20 | CMU/SEI-2007-TN-016

Table 6: Architectural Elements and Their Responsibilities

Number
Shown in
Figure 9

Element Description Responsibilities

1 Raw Data
Source
(Flickr
Server)

External component that is an
online photo management and
sharing application

(Authentication is required be-
fore any data can be accessed
from this service [see section
5.1.3].)

Provides the raw contact information as
a Web Services (REST) interface [Field-
ing 00]

2 Contact
Graph
Builder

• Java application running on a
Windows XP workstation

• Contains OGSATCheck-
Driver, DataFetcher, Con-
figurableDataServiceMan-
ager, and
DataServiceScheduler

Creates a contact graph for any given
subscriber

3 OGSAT
Check-
Driver

The entry point of the Java ap-
plication

• Coordinates control flow between the
DataFetcher component and the Con-
figurableDataServiceManager compo-
nent using simple call-return connec-
tors

• Gets the raw data from the Data-
Fetcher and provides it to the Con-
figurableDataServiceManager

4 Data-
Fetcher

Invoked by the OGSATCheck-
Driver to fetch raw data from
the raw data source

(The DataFetcher is executed
in the same Java Virtual Ma-
chine [JVM] space as the OG-
SATCheckDriver.)

• Performs the authentication logic to
connect to the Flickr server before in-
voking any Web services

• Invokes the Web service to fetch the
raw data from the server (The fetched
data is passed to the OGSATCheck-
Driver.)

 SOFTWARE ENGINEERING INSTITUTE | 21

Table 6: Architectural Elements and their Responsibilities (cont.)

Number
Shown in
Figure 9

Element Description Responsibilities

5 Configur-
ableData-
Service-
Manager

Invoked by the OGSATCheck-
Driver and executed in the
same JVM space as the OG-
SATCheckDriver to provide
access to the OGSA-DAI data
services

• Initializes the OGSA-DAI data ser-
vices

• Connects and invokes the OGSA-
DAI data services using SOAP9

• Provides business-specific10 data
retrieval and storage methods

• Fragments the data and asks the
DataServiceScheduler to get the
next available OGSA-DAI data ser-
vice

6 DataSer-
viceSched-
uler

Uses round-robin mechanism to
provide next available OGSA-
DAI data service to the Con-
figurableDataServiceManager

• Provides next active OGSA-DAI data
service instance to the Configurable-
DataServiceManager for storing and
retrieving data

• Keeps track of active and inactive
OGSA-DAI services

7 Globus
Toolkit Grid
Services
Container

Runtime environment for the
OGSA-DAI WSRF and OGSA-
DAI data services

Provides a runtime environment for host-
ing and executing WSRF Web services
(see Section 2.4).

8 OGSA-DAI
WSRF

Framework that makes OGSA-
DAI data services available

Supports OGSA-DAI data services at
runtime with a set of Java libraries

(OGSA-DAI data services cannot be
deployed directly to the GKT4 runtime
container. They require OGSA-DAI
WSRF at runtime for their execution [see
Section 4.5].)

9 OGSA-DAI
Data Ser-
vices

Configurable data services de-
ployed on the GTK4 container
on top of the OGSA-DAI WSRF
(see Section 4.6); can be ac-
cessed by the Configurable-
DataServiceManager and the
DataServiceProxy

Provide a SOAP interface to the underly-
ing relational databases

(This interface is used by other compo-
nents, the ConfigurableDataService-
Proxy and ConfigurableDataService-
Manager, that want to use the database.)

9 OGSA-DAI provides a Java-based client toolkit that encapsulates the logic of invoking the OGSA-DAI data services by

providing Java APIs instead of using SOAP.

10 Two examples of business-specific data access methods are to (1) check if a particular user has already been added to
the contact graph and (2) store the actual contact information.

22 | CMU/SEI-2007-TN-016

Table 6: Architectural Elements and their Responsibilities (cont.)

Number
Shown in
Figure 9

Element Description Responsibilities

10 Relational
Database
Servers

Relational database serv-
ers corresponding to the
OGSA-DAI data services

(In this T-Check investiga-
tion, Oracle and MySQL
databases were used.)

Retain the information provided by the
OGSA-DAI data services

11 JBoss Appli-
cation Server

A runtime container Hosts the OGSATCheckServlet and Con-
figurableDataServiceProxy

12 OGSATCheck
Servlet

Java Servlet • Invokes the ConfigurableDataService-
Proxy to get the required data from the
databases

• Creates the output Hypertext Markup
Language (HTML) that is displayed

13 Configur-
ableDataSer-
viceProxy

Used by the OG-
SATCheck Servlet to ob-
tain data from the data-
bases

• Initializes and connects to the OGSA-DAI
data services

• Provides business-specific data retrieval
methods11

• Invokes the “deploy” operation and re-
moves configurable data services dy-
namically

• Keeps track of the OGSA-DAI data ser-
vices that are alive at any point

14 Data Con-
sumer and
OGSA-DAI
T-Check
Dashboard

HTML-based graphical
user interface

Provides the following functionality
• Ability to monitor the status of each

OGSA-DAI data service
• Ability to change the status of any

OGSA-DAI service (active or inactive)
• Ability to show the data stored in each

relational database

11 Unlike ConfigurableDataServiceManager, ConfigurableDataServiceProxy does not provide methods for storing informa-

tion.

 SOFTWARE ENGINEERING INSTITUTE | 23

Figure 10: Sequence Diagram Showing the End-to-End Interaction between Various Components

4.8 USING WEB SERVICES TO ACCESS DATA FROM EXTERNAL WEB SITE

With the OGSA-DAI data services deployed, our next step was to implement the Web services
that obtain raw data from the online photo sharing and management application (see Section 4.2).
For the scope of this T-Check investigation, we decided to get the profile information of each sub-
scriber to the online photo management Web site. The raw data collected was the publicly avail-
able contact information for the application’s subscribers. Each subscriber on the Web site has
one or more contacts. Each of these contacts is also a subscriber of the Web site and has its own
set of contacts.

The goal of the Contact Graph Builder application (see number 2 in Figure 9 and Table 6) is to
create a contact graph for any given subscriber, as shown in Figure 11. We call this subscriber the
Root Subscriber (RS1 in Figure 11). Getting raw data by invoking the Web services was easy once
authentication was performed. The authentication mechanism used by the Web site was confus-
ing, though, and there was not enough documentation available to facilitate usage. We spent a
considerable amount of time investigating the authentication mechanism. The details of our ex-
perience are explained in Section 5.1.2. The DataFetcher subcomponent (see number 4 in Figure 9
and Table 6) has the responsibility of authenticating and fetching the data using the Web services.
An open source Java toolkit provided by the online photo management Web site was used to in-
voke the Web services based on the REST protocol.

24 | CMU/SEI-2007-TN-016

Figure 11: Contact Graph Showing the Model of the Raw Data

4.9 CREATING A ROUND-ROBIN SCHEDULER FOR OGSA-DAI DATA SERVICES

As shown in Figure 9 on page 20, we deployed four OGSA-DAI data services. All of these data
services were logical replicas, meaning they had the same underlying database schema and sup-
ported the same operations. One of our goals was to test the dynamic deployment and removal of
OGSA-DAI data services. In support of that goal, we decided to implement the DataSer-
viceScheduler, a round-robin scheduler (number 6 in Figure 9 and Table 6) that was responsible
for alternating between all of the available data services. The DataServiceScheduler switches be-
tween services when one of the following conditions occurs:

• The currently active service has become inactive for some reason.

• The number of records to be stored in a particular database has reached the chunk size. The
chunk size can be configured at the time of starting the Contact Graph Builder application.

As explained before, we decided to deploy and use four OGSA-DAI data services. However, one
of these services is considered a “sacred service,” meaning that is always alive. This configuration
is necessary because its underlying database stores metadata12 required for building the contact
graph.

12 The metadata is information about the current root subscriber and a list of all the contacts who have been root subscrib-

ers at some previous point of the graph creation.

 SOFTWARE ENGINEERING INSTITUTE | 25

4.10 INTEGRATING DATA ACCESS AND STORAGE BY USING OGSA-DAI SERVICES

After successfully performing the authentication and invoking the Web service, we wrote logic
for creating the contact graph that considers the following:

• As mentioned before, one of our requirements is a continuous data source. We achieved this
by looping over all possible unique contacts for a subscriber and their contacts recursively.
For example, in Figure 11 we first fetched and stored data for all the first-level contacts of
RS1 (S2, S3, S4, S5, and S6). After this, S2 was made the root subscriber and all the contacts of
S2 (not shown in figure) were added. Using this logic, we approximated a continuous data
source for the purpose of this T-Check investigation. All of this logic was implemented in
the OGSATCheckDriver subcomponent of the Java application.

• If the contact information of a particular subscriber is already stored, it should not be stored
again. For example, in Figure 11 subscriber S8 is a contact for both S4 as well as S7. The con-
tact information of S8 will already have been stored when the program is processing all the
contacts of S4. Therefore, it should be excluded and not stored again when the program is
processing the contacts of S7. We achieve this by storing a list of contacts whose information
has already been visited and stored before.

• The Contact Graph Builder application should have the capability to resume from a particu-
lar node in the graph. For example, if we stop the application when it is processing the con-
tacts of S4, the program should start processing the contacts of S4 when it resumes. This ca-
pability is achieved by keeping track of the current root subscriber.

One problem faced during this integration was the encoding format of the data obtained from the
Web site. This data contained special characters that the OGSA-DAI service was unable to handle
and store in any of the underlying databases. It was necessary to convert the raw data into UTF-8
encoding format before sending it to the OGSA-DAI data service for storage.

4.11 CREATING THE DATA CONSUMER AND THE DASHBOARD

We created a browser-based client for accessing all the information that was stored in the data-
bases. This information was also accessed using OGSA-DAI data services, as shown in Figure 9.
The browser-based client was an HTML-based Graphical User Interface (GUI) (see Figure 12)
produced using a Java servlet deployed on a JBoss application server [JBossAS 07]. This servlet
invokes the ConfigurableDataServiceProxy using a call-return connector. ConfigurableDataSer-
viceProxy has references to all the available OGSA-DAI services. The dashboard user interface
provides the following functionality:

• lists all the available data services along with their status (active or inactive)

• allows the user to activate/deactivate a service13

• provides the actual data from the all the active databases

• reflects changes to the actual data as new records are added to the databases

13 The OGSA-DAI service corresponding to the “sacred” database cannot be inactivated.

26 | CMU/SEI-2007-TN-016

Figure 12: Screen Capture of OGSA T-Check Dashboard GUI

 SOFTWARE ENGINEERING INSTITUTE | 27

5 Evaluation and Experiences with OGSA

In this section, we present the results of evaluating the solution against the criteria.

5.1 RESULTS OF HYPOTHESIS 1

Hypothesis 1: OGSA provides data storage and retrieval where the specific implementation
or location of the data sources is transparent for raw data consumers and data processors.

This first hypothesis was sustained because

• Data storage services can be used without the service consumer knowing the actual location
of the database. The service consumer only needs to know the unique data resource identifier
and the address of the Grid service container where the OGSA-DAI services are deployed.
Using the unique identifier, the service consumer obtains a handle to the actual data service
from the GTK4 container using the generic service fetcher class14 provided with the toolkit.
In this case, we had prior knowledge of the resource identifiers for each service. In a real sce-
nario, these unique service identifiers can be obtained by querying a discovery service or reg-
istry.

• The data services deployed are identical from a service-consumer point of view, even if their
underlying implementations are different. In this case, different database products were used
as data stores and exposed as OGSA-DAI services. The use of different database products
was not visible to the service consumer, and they were unaware that the data was fragmented
and stored in different data stores. As explained in Section 4.6, four different data services
were deployed, and data was stored in a round-robin fashion using the available services. In
our case, the choice of which data service to use was based on a simple criterion because the
services were used in a round-robin fashion. In a real-life scenario, service selection could be
more complex and based on different criteria.

Although it might seem obvious, it is important to note that in our T-Check investigation, data
could be stored in any of the databases because all they shared a schema that was created at de-
sign time. This circumstance may not hold true in all cases, especially in a dynamic service-
oriented environment where database schemas are created at runtime. However, in a dynamic en-
vironment it is possible to create the database schema on the fly before storing the actual data into
the data store. Another important factor to consider is the data format. The service and the under-
lying data store should be able to support the appropriate data-encoding format to avoid data cor-
ruption.

14 A generic service fetcher class creates proxies for managing communications with data services depending upon the

OGSA-DAI distribution used to deploy the service. This information is deduced by accessing namespaces within the ser-
vice's WSDL description, which is accessed via its URL.

28 | CMU/SEI-2007-TN-016

The following is a more detailed description of some of the additional findings that are relevant to
this discussion.

5.1.1 OGSA-DAI is Slower Than Other Similar Technologies for Data Access and
Retrieval

As explained in Section 4.4, OGSA-DAI is document-oriented, meaning that any communication
between layers in the architecture is done via documents in XML format. Using a document-
oriented architecture provides platform and language independence and provides a single, data-
store-independent interface to a data service. It is understandable that this flexibility has costs and
tradeoffs associated with it, and we were interested in objectively evaluating one of these trade-
offs. We chose response time of the service as our evaluation criteria because it is a quality attrib-
ute applicable to any service. In this case, we decided to evaluate the amount of time the service
takes to perform an insert database operation.

Having previously used other data access and retrieval technologies, we were curious to compare
the response time of OGSA-DAI with them. Given the resource and time constraints, it was not
possible to evaluate all the technologies available. We decided to compare OGSA-DAI services
with two other standard data access mechanisms, namely JDBC and Enterprise Java Beans (EJB)
[JDBC 07, EJB 07]. The following are our reasons for choosing these two technologies:

• Both JDBC and EJB are commonly used mechanisms for performing database interaction.

• The implementation of the OGSA-DAI framework is done in Java. Hence, we felt comparing
OGSA-DAI with two other Java-based technologies was logical.

• Most of our system was implemented using Java-based technologies; hence, it was easier to
compare it with other Java-based technologies. Moreover, we had an existing setup of the
JBoss application server that could be used to deploy EJBs.

Our evaluation was based on empirical data collected by profiling the system at runtime. The pro-
filing was done using timing logs that were recorded in a file. Figure 13 shows the three setups
that were used. The same data and underlying database tables were used in each setup. For each
case, data for two important timings was gathered: (1) the time taken by the Web service to fetch
raw data from the online Web site and (2) the time taken to perform a single database operation.
The database operation performed in each case was to insert new records containing the contact
information into the database. The following are some of the steps that we took to keep the data
consistent across the three setups:

• The same database instance running on the same physical machine was used. The database
tables and indices were also reinitialized to create the same base configuration for each test.

• The tests were executed at almost the same time of the day. The first two tests (OGSA-DAI
and JDBC) were conducted on the same day and the final test (EJB) was conducted on a dif-
ferent day but around the same time of the day.

 SOFTWARE ENGINEERING INSTITUTE | 29

• The tests were run at a time when the least internal network activity was expected15 to mini-
mize the effect of varying network traffic.

• As the highlighted rectangles in Figure 13 show, the only change for each setup was the data
access mechanism.

• Data was fetched for the same root user of the external Web site in all the three cases, ensur-
ing that we were dealing with similar, if not identical, datasets in all three cases.16

Figure 13: Experiment Setups for Comparison

15 All the tests were run during evenings on weekends when the intranet network usage is the lowest. However, this does

not guarantee the lowest amount of traffic inside the intranet.

16 It is possible that there could be slight changes in the number of contacts for one or more users.

30 | CMU/SEI-2007-TN-016

Table 7 shows the summary and comparison of the three tests that were conducted. The results
shown in this table are consistent with our hypothesis that OGSA-DAI services are slower than
their contemporary counterparts, JDBC and EJB, are.

Table 7: Timing Data for Web Service and Three Different Data Access Mechanisms

 OGSA-DAI JDBC EJB

Total number of records fetched from the data service 7128 7128 7128

Average time taken to obtain data from the web service 272 ms 291 ms 475 ms

Average time to store data into the database 88 ms 0.93 ms 4 ms

There could be several reasons for this behavior. As already explained, we suspect the primary
reason for this is the document-oriented architecture of OGSA-DAI. A document-oriented archi-
tecture requires more steps, such as parsing documents. Both JDBC and EJB communicate using
lower-level mechanisms; hence, they are faster. In addition, OGSA-DAI is a relatively new tech-
nology. JDBC and EJB are stable and mature technologies that have been widely adopted for dis-
tributed computing for several years. Both of those technologies have been optimized for best
possible performance; OGSA-DAI has yet to see such a change.

In spite of having lower performance, OGSA-DAI services have advantages, especially for appli-
cations where flexibility is a bigger concern than performance. As we have seen, OGSA-DAI
provides flexibility at the data access layer. OGSA-DAI services can be useful for service con-
sumers looking more for loose coupling at the data access layer than strong performance.

5.1.2 Predicting and Controlling the Quality of Service when Using External Ser-
vices May Not Always Be Possible

Another important understanding about service and Grid systems is supported by all the execution
time tests we conducted. We found that the time to fetch the data from the external Web services
varies dramatically. Again, this is not a new or unexpected observation, but it is an important one.
Variable latency and sporadic failures are not exceptions in a large distributed environment; they
are the rule. Some delay at the service provider’s end, network latency, or a combination of these
factors can cause these failures. Although it is important to understand all of the reasons behind
these deviations, we will concentrate on another aspect of this problem—the lack of control over
external services.

One fundamental consequence of Grid systems and service-oriented systems is lack of centralized
control, as can be seen in the virtual organizations explained in Section 2.1. A lack of centralized
control means that the service consumer has to trust the service provider and hope to get the best
possible service. However, some elements are outside the control of the service provider, such as
network latencies. Service level agreements (SLAs) are a common mechanism for implementing
this mutual agreement between service provider and service consumer. Other techniques, such as
data caching and proper service interface granularity, can be used to reduce the network traffic.
Again, achieving control is difficult when the external services and network are not controlled by
the service provider or the service consumers, which is generally the case for large, distributed
systems.

 SOFTWARE ENGINEERING INSTITUTE | 31

5.1.3 Authentication Mechanisms for Web Services are Still Not Standardized

We had to understand and implement an authentication process before we could use the Web ser-
vices APIs provided by Flickr. As mentioned before, Flickr allows any developer to use its Web
services to develop custom, noncommercial applications. Before using these Web services, the
developer must subscribe to Flickr.17 Because Flickr uses Yahoo’s authentication mechanism, any
existing Yahoo subscriber can authenticate with Flickr using their Yahoo user ID and password. A
developer who does not have a Yahoo account will have to sign up for one to obtain a user ID18
and password. This Yahoo user ID and password can be used to authenticate a user into Flickr.
Then the developer has to register an application with Flickr.

The Flickr authentication mechanism for third-party applications varies with the type of client
application—desktop-based, web-based, or mobile application. The application type needs to be
specified at registration time. In our case, we followed the authentication mechanism for desktop-
based application. After a successful registration of an application, Flickr provides a unique API
key and a shared secret. These interactions are shown in Figure 14. Both user and application reg-
istrations are only performed once.

Figure 14: Sequence of User and Application Registrations with Yahoo and Flickr

Once both registration processes are completed, the following steps are necessary to authenticate
and obtain data (see Figure 15):

1. The API key and shared secret combination are used to register a new session with Flickr.
Upon valid session registration with Flickr, the Java application obtains a unique session
identifier or token called a frob. This token is temporary and expires after a limited amount
of time, after which a new token must be obtained for a new session.

2. The next step is to create an authentication URL, which is the login link. The login URL re-
quires the API key, frob, permissions (read/write/delete), and API signature. The Java toolkit
we used had already implemented the logic of creating the authentication URL. We just had
to provide the required input.

17 The basic version of subscription to Flickr is free.

18 The Yahoo user ID is different from the Flickr user ID. The Yahoo ID is used for authentication purposes only.

32 | CMU/SEI-2007-TN-016

3. The authentication URL is manually copied and pasted into a new Web browser
window.19 On receiving the request, the authentication server (in this case Yahoo) challenges
back by prompting the user for the Yahoo user ID and password.

4. Once the user provides the correct user ID and password, the server prompts for a user con-
sent page. The consent page describes the terms and conditions.

5. The user grants consent. We assume that the Yahoo server shares this session information
with the Flickr server in some way that is internal and implementation-specific.

6. Finally, the Java application can invoke Web services to get data from the Flickr servers.

Authentication Service
(Yahoo)

Contacts Graph Builder
Java App (3rd Party

App)
Online Photo Mgmt Website

(Flickr)Web Browser

Unique Session
 Identifier (frob)

URL

User pastes the URL in the browser

Prompt for
User Id & password

User provides
correct user id & password

Prompts for user’s consent

User grants consent

Create URL using
frob and wait for user input

Invoke Web Service to get data

Register for new
session with API Key

Find if user is authenticated

Data

1

2

3

4

5

Use authenticated response

Figure 15: Sequence of Activities for Authentication

Even though Flickr provides standard Web services interfaces, we spent a considerable amount of
time to understand its authentication mechanism. At the time of selecting the Web services, we
did not consider this. We assume that the authentication mechanism that we have described is
based on concepts similar to the emerging Security Assertion Markup Language (SAML) stan-
dard [SAMLTechOverview 07]. However, we did not find any references that support this as-
sumption. This area of active research proved to be a problem in our small investigation.

19 In a production scale application, this process should always be automated. We did not automate this process due to a

lack of time.

 SOFTWARE ENGINEERING INSTITUTE | 33

Any consumer of external Web services should evaluate security requirements and constraints. In
our case, had we implemented the Contact Graph Builder as a Web-based application instead of a
Java application, the manual cut-and-paste (Step 3 on page 33) would not have been necessary.

5.2 RESULTS OF HYPOTHESIS 2

Hypothesis 2: OGSA allows developers to add new data stores (databases) and remove exist-
ing data stores at runtime without affecting the overall operation of the system.

The second hypothesis was also sustained because

• New data services were easily deployed and exposed without affecting the existing data ser-
vices and the overall operation of the system. OGSA-DAI provides configurable data services
that can be deployed at runtime. The only component that was aware of new service deploy-
ments was the DataServiceScheduler. The distribution of data was automatically handled by
this component. In a more realistic architecture, this responsibility can be assigned to a simi-
lar broker component that takes care of managing data services. This broker component can
be implemented by either the service provider or the service consumer. In this T-Check inves-
tigation, it was implemented as a component on the service consumer end. In our case, it did
not make a big difference from an implementation point of view because we played both ser-
vice provider and service consumer roles. In the real world, service provider and consumers
are often different entities.

• We assume a graceful degradation scenario when existing services are removed. When an
existing OGSA-DAI data service is removed, in other words, all the data in the underlying
data store is no longer available to the service consumer. However, this data is not lost as long
as it is not actually deleted from the underlying database.

5.2.1 It is No Surprise that Testing Distributed Applications is Complicated

An issue that required considerable debugging and research was related to the invocation of
OGSA-DAI services from a remote machine. At the time of installation, we had tested invoking
OGSA-DAI services only from the same machine on which the Globus container was running.
We found that invoking the services from a remote machine did not work. OGSA-DAI provides a
client toolkit that includes the necessary libraries required at compile time and runtime for any
application that uses OGSA-DAI data services. We were able to compile the application success-
fully, but we received an End Point Reference (EPR) exception at runtime when we tried to in-
voke an OGSA-DAI data service [WS-Addressing 04]. The specific exception message on the
server side was “The WS-Addressing To request header is missing exception.” The remote client
failed to read the correct client-config.wsdd file containing the necessary handlers that
automatically put the WS-Addressing headers into any message sent from the client to the OGSA
container. This problem was resolved by adding the client-config.wsdd to the runtime
classpath of the client application.

Although the solution was straightforward, we spent considerable effort to find the cause and de-
vise the solution because the exception stack trace at the client and server sides did not provide
enough clues. Because we were acting as service consumer and service provider, we had access to
both exception stack traces. This circumstance might not be the case in large-scale Grid systems.

34 | CMU/SEI-2007-TN-016

5.2.2 OGSA-DAI Data Services are Good Candidates for Infrastructure Services

Infrastructure services are lower level, generic services that are not business specific, such as data
storage, data translation, and security. Based on our experience with service-oriented architecture
(SOA), we feel that OGSA-DAI data services are more suitable as infrastructure services because
they are not business specific. For example, a properly designed OGSA-DAI data service can be
used by a command and control (C2) system or the customer relationship management (CRM)
system of a large enterprise. An account creation service is business specific because it is de-
signed to be used only in the context of enterprise systems; as a result, it may not be useful for a
C2 system.

Ideally, data service consumers should be abstracted as much as possible from the implementation
details of the data service. An abstraction layer on top of OGSA-DAI data services would be re-
sponsible for managing and coordinating various OGSA-DAI data services and performing other
nonspecific business activities. Ideally, this layer should be the only interface visible to consumers
of the data services.

In our T-Check implementation, the components DataServiceScheduler and ConfigurableData-
ServiceManager provide similar infrastructural capabilities. In a production environment, they can
be completely decoupled from the actual business logic. In our implementation, we used four dif-
ferent data services; one of the services was considered “always alive.” In a real-life system, there
should be multiple redundant “always alive” services to increase dependability. We decided to
implement a simple round-robin scheduling policy. A more complex system could implement a
policy that supports finding and replacing existing services dynamically. For example, if one of
the underlying databases failed or ran out of space, the infrastructure layer could locate another
functional OGSA-DAI data service and use it. These infrastructural responsibilities, such as
switching services and adding new services, can be easily allocated to another layer. This ar-
rangement not only reduces the burden on service consumers but also ensures that infrastructure
activities are standardized and localized in one layer. Consequently, many different service con-
sumers can reuse the functionality in a standard way. Ideally, this layer should also handle the
dynamic allocation and de-allocation of various data resources, making the dynamism transparent
to the end user of the data service.

 SOFTWARE ENGINEERING INSTITUTE | 35

6 Conclusions and Request for Feedback

Our overall experience using the T-Check approach for the evaluation of OGSA for data man-
agement was positive. We feel that Grid technologies have great potential, especially for organi-
zations that are moving towards a service-oriented environment. However, given the vastness of
the Globus Toolkit, it is not easy to evaluate the full technology objectively and in detail. This T-
Check investigation promotes understanding of the fundamental concepts of Grid computing and
OGSA and demonstrates how OGSA-DAI can be used to deal with heterogeneous data reposito-
ries. OGSA-DAI provides an implementation approach for creating data specific infrastructure
services in a service-oriented environment.

The ISIS team that is investigating OGSA and other technologies using the T-Check approach is
interested in feedback from and collaboration with the communities that are considering tech-
nologies for service-oriented environments. If you want to provide feedback or discuss collabora-
tion, contact isis-sei@sei.cmu.edu.

36 | CMU/SEI-2007-TN-016

mailto:isis-sei@sei.cmu.edu

Appendix A Data Service Resource Properties File

As explained in Table 4 on page 17, a data service resource associates a physical data store with
the OGSA-DAI data service resource that can then be associated with an OGSA-DAI data service.
The characteristics of the actual data service resource are required to deploy a new data service
resource. OGSA-DAI requires these characteristics to be specified in a properties file used during
the deployment of a data service resource.

What follows is one of the four properties files that was used in the T-Check examination. The
entries shown in boldface were modified. Similar files were used for the other three services.

Data service resource configuration.

1-Select the name of the data service resource.

The default is "DataServiceResource".

You can change this if you want.

dai.resource.id=SEIOgsaDataServiceResource

2-Select the type of the data resource that forms the data

service

resource.

Remove the hash (#) from the front of the desired type.

Only remove one hash!

dai.data.resource.type=Relational

dai.data.resource.type=XML

dai.data.resource.type=Files

dai.data.resource.type=MultiResource

3-Provide information about the data resource. This includes:

Product name, vendor and version (optional)

Database URI (required).

Database driver class name (required).

Remove the hash (#) from the front of the values

corresponding

to your data resource...

 SOFTWARE ENGINEERING INSTITUTE | 37

3A-Remove the hash (#) from these values if you are

deploying a

MySQL data resource

Then provide the URI and modify the other values if

required.

dai.product.name=MySQL

dai.product.vendor=MySQL

dai.product.version=4.0.2

#dai.data.resource.uri=jdbc:mysql://HOST:PORT/PATH/TO/DATABASE

dai.data.resource.uri=jdbc:mysql://lb.sei.cmu.edu:3306/ogsa

dai.driver.class=org.gjt.mm.mysql.Driver

3K-Remove the hash (#) from these values if you are

deploying a

another type of data resource

Then provide the URI and modify the other values if

required.

dai.product.name=???

dai.product.vendor=???

dai.product.version=???

dai.data.resource.uri=???

dai.driver.class=???

4-Enter the initial credential that users need to provide to

access the data resource.

If no credentials need to be provided then leave blank.

dai.credential=

5-Enter the database username and password that will be used

to log

into the database.

If there is no username or password required or these can be

null

then leave empty.

dai.user.name=****

dai.password=****

38 | CMU/SEI-2007-TN-016

mysql://HOST:PORT/PATH/TO/DATABASE
mysql://lb.sei.cmu.edu:3306/ogsa

Appendix B Acronyms and Initialisms

Acronym Description

API Application Programming Interface

C2 Command and Control

CPU Central Processing Unit

CRM Customer Relationship Management

DNS Domain Name System

DoD Department of Defense

EJB Enterprise Java Beans

EPR End Point Reference

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

GTK4 Globus Toolkit 4

GUI Graphical User Interface

J2EE Java Enterprise Edition

JDBC Java Database Connectivity

OGSA Open Grid Services Architecture

OGSA-DAI Open Grid Services Architecture – Data Access and Integration

PHP Hypertext Pre-Processor

QoS Quality of Service

REST Representational State Transfer

SAML Security Assertion Markup Language

SDK Software Development Kit

SLA Service Level Agreement

SOA Service-Oriented Architecture

TCP/IP Transmission Control Protocol/Internet Protocol

URL Universal Resource Locator

VO Virtual Organization

WSDL Web Services Interface Definition Language

WS-I Web Services Interoperability

WSRF Web Service Resource Framework

 SOFTWARE ENGINEERING INSTITUTE | 39

References

URLs are valid as of the publication date of this document.

[Apache 07]
The Apache Ant Project. Welcome. http://ant.apache.org/ (2007).

[Childers 06]
Childers, Lisa & Sotomayor, Borja. Globus Toolkit 4 Programming Java Services.
San Francisco, CA: Morgan Kaufmann, 2006.

[EJB 07]
Sun Microsystems, Inc. Java Platform, Enterprise Edition (Java EE), Enterprise JavaBeans
Technology. http://java.sun.com/products/ejb/ (1994-2007).

[Fielding 00]
Fielding, R.T. “Architectural Styles and the Design of Network-Based Software Architectures.”
PhD diss., University of California, Irvine, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[Flickr 07]
Yahoo, Inc. About Flickr. http://www.flickr.com/about (2007).

[FlickrAPI 07]
Yahoo, Inc. Flickr Services. http://www.flickr.com/services/api/ (2007).

[Foster 01]
Foster, Ian, et al. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.
http://www.globus.org/alliance/publications/papers/anatomy.pdf (2001).

[Foster 02a]
Foster, Ian. What is the Grid? A Three Point Checklist.
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf (2002).

[Foster 02b]
Foster, Ian, et. al. “Grid Services for Distributed System Integration.” IEEE Computer 35, 6 (June
2002): 37–46.

[Foster 04]
Foster, Ian & Kesselman, Carl. The Grid: Blueprint for a New Computing Infrastructure. San
Francisco, CA: Morgan Kaufmann, 2004.

[Foster 06]
Foster, I. “Globus Toolkit Version 4: Software for Service-Oriented Systems.” 2–13. Proceedings
of the IFIP International Conference on Network and Parallel Computing (NPC 2005) (Lecture
Notes in Computer Science, 3779). Beijing, China, November 30-December 3, 2005. Berlin,
Germany: Springer-Verlag, 2006.

40 | CMU/SEI-2007-TN-016

http://ant.apache.org/
http://java.sun.com/products/ejb/
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
http://www.flickr.com/
http://www.globus.org/alliance/publications/papers/anatomy.pdf
http://www-fp.mcs.anl.gov/%7Efoster/Articles/WhatIsTheGrid.pdf
http://www.flickr.com/about
http://www.flickr.com/services/api/

[GlobusAlliance 06]
The Globus Alliance. Welcome to Globus. http://www.globus.org/ (2006).

[HP 05]
Hewlett-Packard Inc. British Columbia Cancer Agency Improves Patient Care with Distributed
Storage Grid. http://h71028.www7.hp.com/ERC/downloads/4AA0-2779ENA.pdf (2005).

[JBossAS 07]
JBoss.org. JBoss Application Server. http://labs.jboss.com/portal/jbossas (2007).

[JDBC 07]
Sun Developer Network. Java SE – Java Database Connectivity (JDBC).
http://java.sun.com/javase/technologies/database/ (1994-2007).

[Lewis 04]
Lewis, Grace A. & Wrage, Lutz. Approaches to Constructive Interoperability (CMU/SEI-2004-
TR-020, ADA431067). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Univer-
sity, 2004. http://www.sei.cmu.edu/publications/documents /04.reports/04tr020.html

[Lewis 05a]
Lewis, Grace A. & Wrage, Lutz. A Process for Context-Based Technology Evaluation
(CMU/SEI-2005-TN-025, ADA441251). Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn025.html

[Lewis 05b]
Lewis, Grace A; Morris, Ed; O’Brien, Liam; Smith, Dennis; & Wrage, Lutz. SMART: The Ser-
vice-Oriented Migration and Reuse Technique (CMU/SEI-2005-TN-029, ADA441900). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn029.html

[Lewis 06]
Lewis, Grace A. & Wrage, Lutz. Model Problems in Technologies for Interoperability: Web Ser-
vices (CMU/SEI-2006-TN-021, ADA454363). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn021.html

[Myer 04]
Myer, Thomas. Grid Watch: The Importance of Being Stateful.
http://www-128.ibm.com/developerworks/grid/library/gr-wsrf.html (2004).

[NWS 07]
National Weather Service. National Digital Forecast Database XML Web Service.
http://www.weather.gov/xml/ (2007).

[OGF 07]
Open Grid Forum. Success Stories & Case Studies.
http://www.ogf.org/UnderstandingGrids/ggf_resource_caseStudies.php (2007).

[OGSA-DAI 07a]
OGSA-DAI.org. The OGSA-DAI Project. http://www.ogsadai.org.uk/ (2007).

 SOFTWARE ENGINEERING INSTITUTE | 41

http://www.globus.org/
http://h71028.www7.hp.com/ERC/downloads/4AA0-2779ENA.pdf
http://labs.jboss.com/portal/jbossas
http://java.sun.com/javase/technologies/database/
http://www.sei.cmu.edu/publications/documents%20/04.reports/04tr020.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tn025.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tn029.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn021.html
http://www-128.ibm.com/developerworks/grid/library/gr-wsrf.html
http://www.weather.gov/xml/
http://www.ogf.org/UnderstandingGrids/ggf_resource_caseStudies.php
http://www.ogsadai.org.uk/

42 | CMU/SEI-2007-TN-016

[OGSA-DAI 07b]
OGSA-DAI.org. OGSA-DAI Architecture.
http://www.ogsadai.org/documentation/ogsadai-wsrf-2.2/doc/background/architecture.html
(2007).

[OGSA-DAI 07c]
OGSA-DAI.org. Interacting with Data Service Resources.
http://www.ogsadai.org/documentation/ogsadai-wsrf-2.2/doc/interaction/index.html (2007).

[SAMLTechOverview 07]
Organization for the Advancement of Structured Information Standards (OASIS). Security Asser-
tion Markup Language, (SAML) V2.0.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20 (1993-2007)

[Wallnau 01]
Wallnau, Kurt; Hissam, Scott; & Seacord, Robert. Building Systems from Commercial Compo-
nents. New York, NY: Addison-Wesley, 2001.

[WS-Addressing 04]
Worldwide Web Consortium. Web Services Addressing.
http://www.w3.org/Submission/ws-addressing/ (2004).

[WS-I 06]
Web Services Interoperability Organization. About WS-I. http://www.ws-i.org/ (2006).

[WSRF 06]
OASIS. Web Services Resource Framework.
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf (2006).

[Zhang 05]
Zhang, Liang-Jie; Chung, Jen-Yao; & Zhou, Qun. Developing Grid Computing Applications, Part
1. http://www-128.ibm.com/developerworks/library/gr-grid1/ (2005).

http://www.ogsadai.org/documentation/ogsadai-wsrf-2.2/doc/background/architecture.html
http://www.ogsadai.org/documentation/ogsadai-wsrf-2.2/doc/interaction/index.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20
http://www.ws-i.org/
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://www-128.ibm.com/developerworks/library/gr-grid1/
http://www.w3.org/Submission/ws-addressing/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Head-
quarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

April 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
T-CheckSM for Technologies for Interoperability: Open Grid Services Architecture (OGSA)—
Part 1

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Soumya Simanta, Grace A. Lewis, Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2007-TN-016

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Many current technology approaches exist for building systems that have interoperability requirements. This report investigates Open
Grid Services Architecture (OGSA), one of the many technologies for accomplishing interoperability, using the T-Check technique. A T-
Check is a simple and cost-efficient way to understand what a technology can and cannot do in a specific context. This report de-
scribes a T-Check exploration of the feasibility of using OGSA in the context of data management, finding that OGSA (a) provides data
storage and retrieval where the specific implementation of the data store implementation is transparent and (b) allows addition or re-
moval of data stores at runtime without affecting system operation. This report is part one of a two-part investigation; part two will look
at OGSA in the context of load distribution.

14. SUBJECT TERMS
T-Check, OGSA, Grid computing, interoperability

15. NUMBER OF PAGES
52

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	T-Check for Technologies for Interoperability: Open Grid Services Architecture (OGSA)—Part 1
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Grid Computing
	3 Using the T-Check Approach
	4 Designing and Implementing the Solution
	5 Evaluation and Experiences with OGSA
	6 Conclusions and Request for Feedback
	Appendix A Data Service Resource Properties File
	Appendix B Acronyms and Initialisms
	References
	T-Check, OGSA, Grid computing, interoperability

